If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+16X-350=0
a = 1; b = 16; c = -350;
Δ = b2-4ac
Δ = 162-4·1·(-350)
Δ = 1656
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1656}=\sqrt{36*46}=\sqrt{36}*\sqrt{46}=6\sqrt{46}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-6\sqrt{46}}{2*1}=\frac{-16-6\sqrt{46}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+6\sqrt{46}}{2*1}=\frac{-16+6\sqrt{46}}{2} $
| 18+k=-12 | | -60+x=21-2x | | 12+4x=5x-x+12 | | x÷7=32 | | 4n+6+2n=60 | | 1x-12=4x-40x | | -2x+10=-2(x+-5) | | 1/2x+1/2x+x-15+x-25+100=540 | | 1/2(16x)=-12(x+7) | | 2(-x-1)-3(x-9)=2 | | -30-4x=15-x | | 166x+19x+16=1132 | | 2/3x-1/3=5/6x | | 2+3x=-3x+8 | | -19-3x=-6x+56 | | —6d+2—3=1—4(d−2) | | (9x-7)/(5x+7)=0 | | 5x-11+3x-7=90 | | -4/5x=48 | | 3x+x=6.25 | | 7x+5+-5x=5x+3+-5x | | -84-10x=7x+137 | | 8(b+1)+4=3(2b–8)-16 | | -4(c-15)=-8 | | 2-2(3x-5)=12-6x | | -13.9=-1.1+y/8 | | 5×3a-7.9=2.6a+2.9 | | 2(5x+4)=4(2x-14) | | 6b^2-13b+9=0 | | 4x+33x-285=0 | | 3(6f-7)=19+4f | | 2-(8x-4)=-2(4x+3) |